
3/24/2017 Configuring Websockets behind an AWS ELB | jverkamp.com | John-Paul Verkamp

https://blog.jverkamp.com/2015/07/20/configuring-websockets-behind-an-aws-elb/ 1/4

Configuring Websockets behind an AWS ELB
2015 JULY 20
AWS (//blog.jverkamp.com/category/programming/by-topic/aws) Docker (//blog.jverkamp.com/category/programming/by-topic/docker)
Flask (//blog.jverkamp.com/category/programming/by-topic/flask) Networks (//blog.jverkamp.com/category/programming/by-topic/networks)
Programming (//blog.jverkamp.com/category/programming) Python (//blog.jverkamp.com/category/programming/by-language/python)
Websites (//blog.jverkamp.com/category/programming/by-topic/websites) nginx (//blog.jverkamp.com/category/programming/by-topic/nginx)

Recently at work, we were trying to get an application that uses websockets (https://en.wikipedia.org/wiki/websockets) working on an AWS (https://aws.amazon.com/)
instance behind an ELB (load balancer) (https://aws.amazon.com/elasticloadbalancing/) and nginx (http://nginx.org/) on the instance.

If you're either not using a secure connection or handling the cryptography on the instance (either in nginx or Flask), it works right out of the box. But if you want the ELB to
handle TLS termination it doesn't work nearly as well... Luckily, after a bit of fiddling, I got it working.

First, we have a basic application. For my purposes, I wrote a quick Websocket chat app: ws-chat (https://github.com/jpverkamp/ws-chat). The particular implementation
details aren't as important. We'll start with the nginx config file:

upstream webserver {
 server 127.0.0.1:8000;
}

upstream wsserver {
 server 127.0.0.1:9000;
}

server {
 listen 80 proxy_protocol;

 location / {
 if ($http_x_forwarded_proto = "http") {
 return 301 https://$host$request_uri;
 }

 proxy_pass http://webserver;
 }

 location /ws/ {
 proxy_pass http://wsserver;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }
}

Straight forward enough. We have two backend services: a web server (https://github.com/jpverkamp/ws-chat/blob/master/app/web-server.py) running on port 8000 (a
simple Flask server that just servers a single HTML page (https://github.com/jpverkamp/ws-chat/blob/master/app/templates/index.html)) and the websocket backend
(https://github.com/jpverkamp/ws-chat/blob/master/app/ws-server.py) running on port 9000. Alternatively, these could be the same codebase. The important parts are that
you allow the Websocket upgrade header to pass through to establish the connection and that you tell nginx to listen using the proxy_protocol , an extra header that
passes through extra information:

PROXY_STRING + single space + INET_PROTOCOL + single space + CLIENT_IP + single space + PROXY_IP + single space + CLIENT_PORT + singl
e space + PROXY_PORT + "\r\n"

This seems like it wouldn't be necessary, except that without proxy_protocol AWS ELBs seem to strip something important to the connection.

Next, we need to configure the load balancer. One complication here is that telling the load balancer to forward HTTPS traffic to HTTP will not work for the websockets.
Instead, you have to configure it to forward TCP (SSL) to TCP. This will still work for HTTP/HTTPS traffic (as HTTP is just a specific protocol over TCP and HTTPS is just
HTTP with a TLS layer), but it will also allow the non-HTTP websocket traffic to pass through successfully. Something like this:

https://blog.jverkamp.com/category/programming/by-topic/aws
https://blog.jverkamp.com/category/programming/by-topic/docker
https://blog.jverkamp.com/category/programming/by-topic/flask
https://blog.jverkamp.com/category/programming/by-topic/networks
https://blog.jverkamp.com/category/programming
https://blog.jverkamp.com/category/programming/by-language/python
https://blog.jverkamp.com/category/programming/by-topic/websites
https://blog.jverkamp.com/category/programming/by-topic/nginx
https://en.wikipedia.org/wiki/websockets
https://aws.amazon.com/
https://aws.amazon.com/elasticloadbalancing/
http://nginx.org/
https://github.com/jpverkamp/ws-chat
https://github.com/jpverkamp/ws-chat/blob/master/app/web-server.py
https://github.com/jpverkamp/ws-chat/blob/master/app/templates/index.html
https://github.com/jpverkamp/ws-chat/blob/master/app/ws-server.py

3/24/2017 Configuring Websockets behind an AWS ELB | jverkamp.com | John-Paul Verkamp

https://blog.jverkamp.com/2015/07/20/configuring-websockets-behind-an-aws-elb/ 2/4

(//blog.jverkamp.com/2015/07/20/configuring-websockets-behind-an-aws-elb/configure-elb.png)

(Don't forget to set the certificate :))

Finally, you have to configure the ELB also to speak proxy protocol. This part is slightly more annoying, since (at least now), there's no way to configure this through the AWS
console. You have to use the AWS CLI (https://aws.amazon.com/cli/).

First, create the new policy (assuming you have an environment variable ELB_NAME defined):

aws elb create-load-balancer-policy \
 --load-balancer-name $ELB_NAME \
 --policy-name $ELB_NAME-proxy-protocol \
 --policy-type-name ProxyProtocolPolicyType \
 --policy-attributes AttributeName=ProxyProtocol,AttributeValue=True

Then, attach it to the load balancer. You will have to run this once for each port that the instance is listening on:

aws elb set-load-balancer-policies-for-backend-server \
 --load-balancer-name $ELB_NAME \
 --instance-port 80 \
 --policy-names $ELB_NAME-proxy-protocol

Make sure that you're using https:// for the web traffic and wss:// for the websocket and you're golden. Encrypted websockets behind an AWS ELB. Now if only they
would expose the proxy protocol options in the console...

14 Comments jverkamp.com Login1

 Share⤤ Sort by Best

Join the discussion…

 • Reply •

Naveen • 4 months ago

I am having the same setup.
but in nginix i am not getting the client ip correctly it is always the elb ip
△ ▽

 • Reply •

gagan • 4 months ago

We are facing similar Kind of issue. We have configured two instances behind the load balancer and Socket.Io is not working if we access the site
through elb endpoint but on checking individual instance ip socket connection is working fine among both the instances. Above solution is little bit
confusing. Can someone type the complete answer here ?

If possible can you share your contact # JP ?
△ ▽

 • Reply •

Arlindo Santos • 9 months ago

Where is your SSL termination occurring in this case? I don't think SSL termination can occur at the AWS ELB because its using the TCP transport
layer? Is your nginx doing it?
△ ▽

 • Reply •

JP Verkamp • 9 months agoMod > Arlindo Santos

The ELB is doing it. When you set up a listener from SSL (Secure TCP) to TCP it will do the termination.
△ ▽

Lemuel Formacil • 10 months ago

 Recommend 1

Share ›

Share ›

Share ›

Share ›

https://blog.jverkamp.com/2015/07/20/configuring-websockets-behind-an-aws-elb/configure-elb.png
https://aws.amazon.com/cli/
https://disqus.com/home/forums/jverkamp/
https://disqus.com/home/inbox/
https://blog.jverkamp.com/2015/07/20/configuring-websockets-behind-an-aws-elb/#comment-3014499265
https://disqus.com/by/disqus_CYrJKfkHG3/
https://blog.jverkamp.com/2015/07/20/configuring-websockets-behind-an-aws-elb/#comment-3009772656
https://disqus.com/by/disqus_iviLimXjVV/
https://blog.jverkamp.com/2015/07/20/configuring-websockets-behind-an-aws-elb/#comment-2757858972
https://disqus.com/by/jpv0/
https://blog.jverkamp.com/2015/07/20/configuring-websockets-behind-an-aws-elb/#comment-2761055819
https://blog.jverkamp.com/2015/07/20/configuring-websockets-behind-an-aws-elb/#comment-2757858972
https://disqus.com/by/lemuelformacil/
https://blog.jverkamp.com/2015/07/20/configuring-websockets-behind-an-aws-elb/#comment-2721165048
https://disqus.com/by/disqus_CYrJKfkHG3/
https://disqus.com/by/disqus_iviLimXjVV/
https://disqus.com/by/jpv0/
https://disqus.com/by/lemuelformacil/

