
The Evolution of Injecting Services in Ember

Posted On: February 26, 2015

ember­versionsember­versions 1.10+1.10+

I’ve been using Ember for about two years now. One of the things that initially impressed

me is you don’t need a lot of boilerplate code. At a bare minimum you need an

Ember.Application.create() and an application template to get your app running. It won’t

do anything, but it is a perfectly functioning application. The first Ember app I wrote is still

up on the Internet here: http://raytiley-msse-static-scheduler.herokuapp.com.

If you dig into the source code you’ll see there are only Routes, Models, and Controllers.

Alas, things were simpler back then. The app I develop today has Mixins, Transforms,

Helpers, Views, Adapters, Serializers, and I think we just passed fifty Components.

If you are new to Ember then this might seem like a lot to manage, but actually it is quite

the opposite. All these things have meaning. They all have their own folder in my app, and

just by naming them correctly Ember CLI magically wires them all together into a working

application. My favorite thing about Ember is how it can take away the pointless choices,

and nothing is more pointless then deciding where to put a thing, or what to call it.

However, it is not all rainbows and unicorns. There have always been these pesky things

in real apps that don’t fit neatly into one of Ember’s buckets. They usually need to be used

from multiple parts of your app, think logging, analytics, sessions, authentication, etc. Up

until Ember 1.10 you had two basic approaches for these shared objects.

Option One - Make it a Controller

This is a fine approach. Controller is one of those generic words like manager. When

programming if you’re not in a creative mood just call it a Manager. Unless you happen to

be writing an Ember app, then just call it a Controller. You can then get access to your

plethora of controllers using needs or controllerFor. This might look like the following:

// controllers/flash-messages.js
// This controller will be a singleton, meaning any place we use it we'll get the same object.
// So we can push a message on from a route or a controller and the application template could
// display all the messages.

http://mixonic.github.io/ember-community-versions/
http://raytiley-msse-static-scheduler.herokuapp.com/#/taskSets
https://github.com/raytiley/RealTimeScheduler/tree/master/app/assets/javascripts/app
http://emberjs.com/blog/2015/02/07/ember-1-10-0-released.html

So beyond the obvious fact that controllers are going away in Ember 2.0 this approach

has some drawbacks. First, you have two different APIs for getting the same thing

depending on if you’re trying to get it from a controller or a route. Second, you’re limited

to where you can access these objects. I may only need to use my flash manager in

controllers and routes, but something like a logging service would be useful in other

locations such as components.

Option Two - Dependency Injection with Initializers

export default Ember.Controller.extned({

 pushMessage(type, message) {
 // Do your sweet thing here
 },

 messages: function() {
 // Return the latest message, or all the messages, whatever
 }.property('someInternalThing')

});

// routes/posts/view.js
// In a Route we can use controllerFor to access our flash message controller.
export default Ember.Route.extend({
 actions: {
 postComment: function(trollingMessage) {
 // Do your comment stuff
 var flashManager = this.controllerFor('flash-messages');
 flashManager.pushMessage('success', 'You are a troll.')
 }
 }
}
});

// controllers/posts/view.js
// In a controller we can use the needs api to Ember know we need access to the flash-message controller
// It is very common to use an alias so you don't have to type controllers a million times
export default Ember.Controller.extend({
 needs: ['flash-message'],
 flashManager: Ember.computed.alias('controllers.flash-message'),

 actions: {
 upVote: function() {
 // Do some voting
 var flashManager = this.get('flashManager');
 flashManager.pushMessage('error', 'Your vote does not count');
 }
 }
}
});

https://github.com/emberjs/rfcs/pull/15

Option Two - Dependency Injection with Initializers

Dependency injection sounds scary, but it’s not. It is just a mechanism to reduce coupling

between different objects in your application. The example above using needs and

controllerFor is one way Ember does dependency injection. If you have ever passed an

object to another object’s constructor you’ve done constructor injection.

Tight coupling makes code harder to maintain. Imagine you are an aspiring photographer,

but every time you want to take a photo you buy a new iPhone to take a picture. This is

analogous to creating a new LoggingService() every time you want to log something in

your application.

Besides being quickly broke, you the photographer are tightly coupled to iPhone. If we

wanted to change the type of camera you use to ‘DigitalSLR’ we would need to follow you

around and make sure we find every place you might take a picture and switch iPhone to

DigitalSLR. This is analogous to having to change every place we use new

LoggingService() in a big application.

Now imagine that at the start of every day some magical person put a camera on your bed

side table and you used that camera all day. Having the camera provided to you makes it

easy to change iPhone to DigitalSLR. We have injected the camera dependency, and now

our code is easier to maintain.

In Ember that magical person that can change your camera in an initializer. Initializers

are just bits of code that run before your application is booted and let you set things up. In

our initializer we will register our dependency and then inject it into the types of objects

where we want to use it. Coding our logging service this way would look like this:

// utils/logger.js
// Just a simple object that does some logging for us
export default Ember.Object.extend({

 log(type, message) {
 // Do your sweet thing here
 }

});

// initializers/logging.js
// In our initializer we import our Logger and then register it as logger:main
// Then we can inject logger:main into whatever types of objects we want access to it
import Logger from '../utils/logger.js';

http://en.wikipedia.org/wiki/Dependency_injection#Constructor_injection

There are lots of different knobs that can be dialed in here. For instance the default

behavior is we get a singleton logger, meaning that all the logger properties will be the

same across routes, controllers, and components. We could change this. For more details

read the api docs. So what’s wrong with this approach? Nothing in particular, I actually

quite like it. There are a few things to be aware of however.

Notice I didn’t need to declare a logger property on my PostsViewRoute. The logger

property is injected onto all my routes whether I like it or not. I find it good practice to

declare my injected properties with null (logger: null). I spent a long time once

debugging an injected property conflicting with another property. By declaring it

explicitly I prevent myself from accidentally using that name for something else.

Another thing about this approach is it can be a bit tedious to limit your injections.

Something like logging we want everywhere, but that’s not always the case. You can

configure inject a bunch, but if you’re lazy it is easy just to give all the routes something

that maybe only one or two of them need.

Meet Ember.inject.service and Ember.inject.controller

What’s great about Ember is how it embraces paving cow paths. Pretty much every non

export default {
 name: 'logger',
 initialize: function(container, application) {
 // register our logger
 application.register('logger:main', Logger);

 // inject our logger so it is availble in controllers, routes, and components
 application.inject('controller', 'logger', 'logger:main');
 application.inject('route', 'logger', 'logger:main');
 application.inject('component', 'logger', 'logger:main');
 }
};

// controllers/posts/view.js
// In our route there is a property logger that is our logging service
export default Ember.Controller.extend({

 activate: function() {
 this.logger.log('This route was activated.');
 }

});

http://emberjs.com/api/classes/Ember.Application.html#method_register
http://emberjs.com/api/classes/Ember.Application.html#method_inject

trivial Ember application is doing some combination of the above. In my own app I have

lots of needs (pun intended) and several initializers injecting services. These patterns are

tried, trued, and we know where all the cow shit is. So lets smooth them over using some

new APIs. The controller part of our first example becomes:

// controllers/posts/view.js
export default Ember.Controller.extend({
 flashManager: Ember.inject.controller('flash-message'),

 actions: {
 upVote: function() {
 // Do some voting
 var flashManager = this.get('flashManager');
 flashManager.pushMessage('error', 'Your vote does not count');
 }
 }
}
});

Granted this doesn’t do a whole lot for us, we only got to remove one line of code. Also if

we need access to a controller from a route we still need to use controllerFor. What I’m

really excited about is Ember.inject.service(). Our second example becomes:

// services/logger.js
// Just a simple object that does some logging for us
export default Ember.Service.extend({

 log(type, message) {
 // Do your sweet thing here
 }

});

// routes/posts/view.js
export default Ember.Controller.extend({
 logger: Ember.inject.service('logger'),

 activate: function() {
 this.get('logger').log('This route was activated.');
 }

});

Sweet! We got to remove a whole file, the initializer is gone. Notice also that we moved

logger.js from utils to services. By placing our services in the services folder Ember CLI

will find them for us automatically. One less pointless choice. (the choice of utils was

pointless. I just made that up in my own app.) I also like this better because I’m explicitly

delcaring that I want the logger service available on PostsViewRoute. Other routes won’t

have a logger automatically. This also means that I don’t have to worry about my injected

property conflicting.

Now there are some rules for what can be injected where, but there is no public API for

customizing that yet. For the most part you can inject services where you would think,

including routes, controllers, views, and components. This isn’t only for your own services.

Addons can expose services and you can inject them into your apps objects. For example

Ember Data has an open PR to allow you to expose the store as a service.

I’m a big fan of this API. It allowed me to delete a bunch of initializers in our app, and

removed some silly choices from my day to day development. I think the Services API

shows how Ember can constantly iterate on ideas without making me throw away all my

code.

10 Comments Ray Tiley Shun

 Share⤤ Sort by Best

Join the discussion…

• Reply •

about__blank • 10 months ago

No biggie, but the first line in the first controller has `export default
Ember.Controller.extned({` instead of `export default Ember.Controller.extend({`

I think `extned` is what happened to Ned Stark in Game of Thrones...
 4△ ▽

• Reply •

futhey • 4 months ago

Nice writeup! Little typo in your first code snippet though (extned)..
 △ ▽

• Reply •

Alex White • 7 months ago

This is great! Thanks for sharing. The new Ember.inject.service() syntax is
perfect. Ember.Service also exists now but it looks like "store" isn't injected on
things in the services folder. But since the Ember Data PR you referenced has
been merged since ED 1.0 Beta 16, you can now manually inject store into
Ember.Service. Works great!

 △ ▽

 Recommended  1

Share ›

Share ›

Share ›

https://github.com/emberjs/data/pull/2820
https://disqus.com/home/forums/raytiley/
https://disqus.com/home/inbox/
https://disqus.com/by/about__blank/
http://raytiley.com/posts/the-evolution-of-injecting-services-in-ember/#comment-1884998282
https://disqus.com/by/futhey/
http://raytiley.com/posts/the-evolution-of-injecting-services-in-ember/#comment-2248791354
https://disqus.com/by/disqus_4zURhCngys/
http://raytiley.com/posts/the-evolution-of-injecting-services-in-ember/#comment-2059823236
https://disqus.com/by/shunchu/
https://disqus.com/by/about__blank/
https://disqus.com/by/futhey/
https://disqus.com/by/disqus_4zURhCngys/

• Reply • △ ▽

• Reply •

Sendage Climbing • 8 months ago

While refactoring to use the new Service API, I did find it annoying to have to
change "this.logger" with "this.get('logger')". Any way to make this less painful?

 △ ▽

• Reply •

Roger Adams • 9 months ago

Thanks for the write-up, found this very helpful!
 △ ▽

• Reply •

jkneb • 10 months ago

Really insightful, thanks a lot. Small typos in the snippets comments though.
You're mentioning the file 'view.js' which in 2 or 3 cases should be pointing to a
supposed 'route.js'. Thanks again for sharing this!

 △ ▽

• Reply •

codeofficer • 10 months ago

I love the evolution aspect of this article. Great work! One small correction: It's
recommended to have your Service object extend Ember.Service ... The reason
is that they made add functionality to that class later on.

 △ ▽

• Reply •

raytiley • 10 months agoMod > codeofficer

Nice catch. I'll update that ASAP. In practice I've been migrating things
over that already extend Ember.Object. Works fine, but future proofing is
always wise.

 △ ▽

• Reply •

Steven Lindberg • 10 months ago

Great writeup! If you're willing to sacrifice a little explicitness, you can omit the
`'logger'` param from the service injection, since it will default to looking up a
service with the same name as the property:
https://github.com/emberjs/emb....

 △ ▽

raytiley • 10 months agoMod > Steven Lindberg

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/sendage/
http://raytiley.com/posts/the-evolution-of-injecting-services-in-ember/#comment-1995497931
https://disqus.com/by/disqus_UtyPvkbIV5/
http://raytiley.com/posts/the-evolution-of-injecting-services-in-ember/#comment-1904656433
https://disqus.com/by/jkneb/
http://raytiley.com/posts/the-evolution-of-injecting-services-in-ember/#comment-1883341037
https://disqus.com/by/codeofficer/
http://raytiley.com/posts/the-evolution-of-injecting-services-in-ember/#comment-1882985862
https://disqus.com/by/raytiley/
http://raytiley.com/posts/the-evolution-of-injecting-services-in-ember/#comment-1883100629
http://raytiley.com/posts/the-evolution-of-injecting-services-in-ember/#comment-1882985862
https://disqus.com/by/stevenlindberg/
http://raytiley.com/posts/the-evolution-of-injecting-services-in-ember/#comment-1882686602
https://github.com/emberjs/ember.js/blob/v1.11.0-beta.4/packages/ember-runtime/lib/system/service.js#L27-L28
https://disqus.com/by/raytiley/
http://raytiley.com/posts/the-evolution-of-injecting-services-in-ember/#comment-1883101438
http://raytiley.com/posts/the-evolution-of-injecting-services-in-ember/#comment-1882686602
https://disqus.com/by/sendage/
https://disqus.com/by/disqus_UtyPvkbIV5/
https://disqus.com/by/jkneb/
https://disqus.com/by/codeofficer/
https://disqus.com/by/raytiley/
https://disqus.com/by/stevenlindberg/
https://disqus.com/by/raytiley/

