
27 Jul 2015 on Ember Services

Ember Services
Tutorial

 Have you ever wondered how to use

a Ember service in your Ember app? I know I have so this tutorial will go

over all the things you should know to get up to speed. Let's start with a

definition.

What is Ember.Service?

Program With Erik

About

Blog

http://www.programwitherik.com/tag/ember-services/
http://emberjs.com/api/classes/Ember.Service.html
http://www.programwitherik.com/
http://www.programwitherik.com/about
http://www.programwitherik.com/
https://github.com/ErikCH
https://plus.google.com/+ErikHanchett?rel=author
https://twitter.com/ErikCH
http://www.programwitherik.com/rss

What is Ember.Service?

Ember.Service is a class singleton object that holds on to state. It's lazy

instantiated when it is used and it is never destroyed as long as the

application runs. It isolates responsibilities of the application without

using global variables.

When Should You Use It?

Services can be helpful in several situations. Here are a few examples

that you might want to use an Ember service.

Session Data

APIs that talk to a server

WebSockets

GeoLocation data

Events pushed from a server

What You'll Learn In This Tutorial

In this post we'll go over Dependency Injection, what it is and how to use

it. We'll deep dive into services and give a couple of examples so you'll

know what to do if you ever need to use one.

Dependency Injection

You can't really talk about services without talking about dependency

injection (DI). DI and service lookup are two important Ember framework

concepts. When we talk about DI what we are saying is that we can take

objects and inject them into other objects during instantiation. What that

means is that we can take our service and inject it into our

routes,controllers, templates or components so they can be used.

https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Dependency_injection
http://guides.emberjs.com/v1.13.0/understanding-ember/dependency-injection-and-service-lookup/

This is really important for our service. For example if we have an API

we'll need to be able to talk to it to retrieve the information we need. For

example let's say we need the API in all our components. With DI this as

easy as one line in our initializer.

If you've ever used Ember-Data then you've used DI. Ember-Data injects

the store into all routes and controllers. That's why you can do

commands like this.

//controller

 this.store.find('item').then(function(items){

 controller.set('items', items);

 });

In the next sections we'll see an example of a service working with DI.

Simple Example Using A Service

For the first example we'll create a super simple service. Its only function

is to return a string from a method and to keep track of a property. You

can follow along with the source code here.

Prereqs

Ember CLI (and all it's dependencies)

Node or iojs

// some initializer file

application.inject('component', 'api', 'service:api')

https://github.com/emberjs/data
https://github.com/ErikCH/EmberServiceSimpleTest
http://www.ember-cli.com/

As of this writing that's 1.13.1. Please start with these commands.

Setup

$ ember new ServiceTest

$ cd ServiceTest

$ ember g service start

$ ember g component comp‐test

$ ember g initializer init

These commands will generate the scaffolding for our project. Remember

that a component must have a hyphen in the name. To learn more about

components check out my component example tutorial here.

Service

Let's begin by setting up the service.

// app/services/start.js

import Ember from 'ember';

export default Ember.Service.extend({

 isAuthenticated: true,

 thisistest: function() {

 return "this is erik";

 }

});

As you can see all we are doing is returning a string and keeping a

property name isAuthenticated.

http://www.programwitherik.com/ember-js-components-examples/

Next up is our component.

Component

From the top you can see we created a new variable called inject. This is

just so I don't have to type Ember.inject every time. The start:

inject.service() is one way of injecting the start service into this

component. We'll go over the other way in a second.

Keep in mind you can omit the service name if the property name

matches the service name. In the above example the property name is

start which matches the service we created earlier. If it didn't match we

would have to do something like this.

// app/components/comp‐test.js

import Ember from 'ember';

var inject = Ember.inject;

export default Ember.Component.extend({

 start: inject.service(),

 message: 'test',

 actions: {

 pressMe: function() {

 var testText = this.get('start').thisistest();

 this.set('message',testText);

 console.log(this.get('start').isAuthenticated);

 }

 }

});

othername: inject.service('start'),

...

We could then use othername instead in our code.

In the component we have an action called pressMe which udpates the

message property to the text returned from the service method thisistest.

For good measure I also log the isAuthenticated into the console.

Initializer

The alternative way of injecting is using the initializer. Like this.

This initializer will inject the start service into every component with the

name start. In this case we don't need to include the inject.service into

the component. Either way this should work.

Component Template

Now for a little housekeeping we'll add a really simple component

// app/initializers/init.js

export function initialize(container, app) {

 app.inject('component', 'start', 'service:start');

}

export default {

 name: 'init',

 initialize: initialize

};

template.

The button action is bound to the button and the message property will

be updated.

Application Template

Finally we'll take a look at the application template.

// app/templates/application.hbs

<h2 id="title">Welcome to Service Ember.js</h2>

{{outlet}}

{{comp‐test}}

What It Should Look Like

In the above code I added the comp-test component to the template. If all

goes well it should look like this.

Ember Socket Service Example

// app/templates/components/comp‐test.hbs

<button {{action "pressMe"}}>push me</button>

{{message}}

Ember Socket Service Example

I wrote earlier that a good example of using a service is when you're

dealing with WebSockets. WebSockets are an easy way to send

information from the client to the server.

I explored Ember and WebSockets in an earlier tutorial. In that tutorial I

used the most excellent EmberJS WebSockets addon by Travis Hoover. It

did a lot of the heavy work and the API was really easy to use. The addon

created a service so I didn't have to create one.

For this example I'll be using SockJS and we'll be building our own

service. We'll create a node server as well. If you like to follow along you

can check out the Ember code here and the node code here.

The application is a basic chat room. Multiple clients can connect, pick a

username and send to all other users connected. To keep it simple the

chat data isn't saved anywhere, although it wouldn't be too difficult to add

a Redis backend.

Node Code

We'll begin by checking out the server code.

$ npm init

$ npm install sockjs ‐‐save

After running npm init you can just press enter 10 times to get through all

the prompts. For this tutorial the only dependency we care about is

sockjs.

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
http://www.programwitherik.com/getting-started-with-web-sockets-and-ember/
https://github.com/thoov/ember-websockets
https://github.com/sockjs
https://github.com/ErikCH/SockJsEmber
https://github.com/ErikCH/SockJSSample

// app.js

var http = require('http');

var sockjs = require('sockjs');

var clients = {};

// Broadcast to all clients

function broadcast(message){

 // iterate through each client in clients object

 for (var client in clients){

 // send the message to that client

 clients[client].write(message);

 }

}

var echo = sockjs.createServer({ sockjs_url: 'http://cdn.jsdelivr.net/sockjs/1.0.1/sockjs.min.js'

echo.on('connection', function(conn) {

 clients[conn.id] = conn;

 conn.on('data', function(message) {

 console.log('received ' + message);

 broadcast(message);

 });

 conn.write("hello from the server thanks for connectiong!");

 conn.on('close', function() {

 delete clients[conn.id];

 });

 console.log("connected");

});

var server = http.createServer();

I'm not going to lie I stole most of this code directly from the sample

application on the SockJS github page. I did a few modifications so it

sent data to all connected clients. I won't get into too much detail on this

however the program essentially echos any message it receives to all

other clients.

To start the server we simply run this command.

$ node app.js

Emberjs Code

As with the last example we'll create all these files.

$ ember new ServiceSockJS

$ cd ServiceSockJS

$ ember g service sockjs

$ ember g component chat‐room

$ ember g initializer init

$ bower install sockjs

This time I called my component chat-room. It will talk to the service and

update the template.

Configuration

To use SockJS we'll need to use the client library in Ember. Since SockJS

echo.installHandlers(server, {prefix:'/echo'});

server.listen(7000, '0.0.0.0');

https://github.com/sockjs/sockjs-node

is a Non-AMD asset we'll need to import it a certain way for it to work.

Instead of using the app.import in our Broccoli file and then importing it

in our application we just need to app.import it.

If we double check the SockJS documentation we'll see that SockJS is a

global variable and we can use it anywhere in our application. Be aware

that JSHint, a program built into Ember CLI that helps detect errors, will

complain anytime you use SockJS in your application. An easy way of

fixing this is adding a global SockJS comment to the top of any files that

we use SockJS in. We'll go into that in a little bit later.

Another needed, albeit somewhat annoying feature of Ember CLI is the

Ember CLI Content security Policy. This is not really used in production

and is used as more of a reminder to developers to keep CSP and security

in mind when developing Ember applications.

For now we'll just add these lines to the environment.js file.

// ember‐cli‐build.js"

...

 app.import('bower_components/sockjs/sockjs.min.js');

...

// config/environment.js

...

APP: {

 // Here you can pass flags/options to your application instance

 // when it is created

 },

https://en.wikipedia.org/wiki/Asynchronous_module_definition
http://www.ember-cli.com/user-guide/#standard-non-amd-asset
http://jshint.com/docs/
https://github.com/rwjblue/ember-cli-content-security-policy

This will remove all the warnings we have when dealing with our Ember

application.

Service

First we'll take a peek at the sockjs service file.

 contentSecurityPolicy: {

 'default‐src': "'none'",

 'script‐src': "'self' 'unsafe‐inline' 'unsafe‐eval'"

 'font‐src': "'self'",

 'connect‐src': "'self' ws://localhost:7000 localhost:7000"

 'img‐src': "'self'",

 'report‐uri':"'localhost'",

 'style‐src': "'self' 'unsafe‐inline'",

 'frame‐src': "'none'"

 }

...

// app/services/sockjs.js

/* global SockJS */

import Ember from 'ember';

var run = Ember.run;

var socket;

export default Ember.Service.extend(Ember.Evented,{

 setupSockjs: function() {

 socket = new SockJS('http://localhost:7000/echo');

 socket.addEventListener('message', run.bind(this, function

 this.trigger('messageReceived', event.data);

 console.log(event.data);

Lot's to look at here so we'll break it down.

/* global SockJS */

This is the comment that we need at the top of the file so JSHint won't

complain about the SockJS global variable.

We want to have this service use the built in Ember.Evented mixin. The

neat thing about this mixin is that it allows the creation of events that can

be subscribed and emitted. We'll need this later in the code so we can use

trigger

setupSockjs: function() {

}.on('init')

This method setupSockjs is where the SockJS socket will be setup and

 }));

 }.on('init'),

 sendInfo: function(message) {

 socket.send(message);

 console.log(socket);

 }

});

export default Ember.Service.extend(Ember.Evented,{

});

http://emberjs.com/api/classes/Ember.Evented.html

the event listener will be created. The on('init') is an observer that will fire

after initialization of the object.

This line is simple. We just create a new variable with SockJS. The URL

should match the local server you have running. echo was the prefix

created earlier in the app.js file.

The addEventListener will fire when messages come in. This is a built in

method for SockJS.

Next is run.bind. I wrote a tutorial about the Ember run loop earlier this

year and I briefly talked about Ember.run. We have to use this so that

Ember can keep track of all our request correctly in the run loop.

The this.trigger creates a new event called messsageReceived. Trigger is

apart of the Event.Evented class. The event created will also pass the

event.data object. This is important since later we'll subscribe to

messageReceived so we can display it in our template.

Just so we know it's working I'll log the event.data to the web browser

console. This should just be the text that is received from the server.

The last thing we need to take a look at is the sendInfo method.

socket = new SockJS('http://localhost:7000/echo');

socket.addEventListener('message', run.bind(this, function(event)

 this.trigger('messageReceived', event.data);

 console.log(event.data);

 }));

http://guides.emberjs.com/v1.13.0/object-model/observers/#toc_observers-and-object-initialization
http://www.programwitherik.com/why-you-should-care-about-the-ember-run-loop/
http://emberjs.com/api/classes/Ember.Evented.html#method_trigger
http://emberjs.com/api/classes/Ember.Evented.html#method_trigger

 sendInfo: function(message) {

 socket.send(message);

 console.log(socket);

 }

This method accepts a message object that it sends to the socket server.

I made socket global so it can be accepted by this method. (Forgive the

camelcase in this program, I just like using it)

That's about it for the service.

Component

Here is the code for the component.

// app/components/chat‐room.js

import Ember from 'ember';

export default Ember.Component.extend({

 message: '',

 setup: function() {

 this.get('sockjs').on('messageReceived',this, 'messageReceived'

 }.on('init'),

 messageReceived: function(message){

 $('#chat‐content').val(function(i, text){

 return text + message+ '\n';

 });

 this.set('message',message);

https://en.wikipedia.org/wiki/CamelCase

We'll break this down.

This is another setup function that fires on init. Remember the event we

created earlier in the service? Well now we can subscribe to it by using

on. The first parameter is the name of the event, the second parameters

is the binding, and the last is the callback to execute. Essentially anytime

this event is triggered the messageReceived method will be executed.

Here is our callback.

 },

 actions: {

 enter: function(info,username) {

 var send = this.get('sockjs');

 send.sendInfo(username + ': ' + info);

 }

 }

});

 setup: function() {

 this.get('sockjs').on('messageReceived',this, 'messageReceived'

 }.on('init'),

 messageReceived: function(message){

 this.$('#chat‐content').val(function(i, text){

 return text + message+ '\n';

 });

 this.set('message',message);

When a message is received we'll do a simple append to the message

with a newline so it appears correctly in our text box. We'll go over the

chat-room template soon and this will make more sense.

This action is triggered when the user submits the chat data. We send to

the service the message we want sent to the service.

Chat-room template file

This template file is fairly simple. We have a big text area that will display

the chat info. We use two Ember input helpers that will help us keep track

 },

actions: {

 enter: function(info,username) {

 var send = this.get('sockjs');

 send.sendInfo(username + ': ' + info);

 }

 }

// app/templates/components/chat‐room.hbs

 <textarea id="chat‐content" style="width:500px;height:300px"

 {{input type='text' placeholder='User Name' value=uname}}

 {{input type='text' placeholder='Chat Message' value=mess}}

 <button {{action 'enter' mess uname}}>Send</button>

Message received:{{message}}

http://guides.emberjs.com/v1.10.0/templates/input-helpers/

of the user name and the message we want to send.

The enter action is sent and the two properties are sent with it.

Initializer

We only have one component but just for fun I injected my sockjs service

to every component, in case we need to use it in the future.

Code Application

// app/templates/application.hbs

h2 id="title">Welcome to SockJS test</h2>

{{chat‐room}}

In this file I just added the component we just created to it.

What does it look like?

export function initialize(container, application) {

 application.inject('component', 'sockjs', 'service:sockjs');

}

export default {

 name: 'websockets',

 initialize: initialize

};

I'll see if I can put up a demo of it somewhere but for now you'll have to be

satisfied with some animated gifs. You can of course run the code

yourself and give it a whirl. Let me know if you have any issues.

Conclusion

So today we went over dependency injection. How to do it on individual

files or globally. Then we went over services, why you should use them

and a few examples. The first example went was simple. The second was

a chatroom.

Image Credit Linde Gas

Comment? Tweet me at @ErikCH

If you like this tutorial signup for my mailing list! I'll give you free stuff!

I hate SPAM. I won't share your your email address with anyone, ever.

Are you a software developer?
Join me and receive a FREE Ember testing cheat sheet and a FREE Aurelia getting started
cheat sheet. As well as advice and information on the latest in Node.js, Ember CLI and
JavaScript.

email address

Join Now

https://github.com/ErikCH/SockJSSample
https://github.com/ErikCH/SockJsEmber
http://www.linde-gas.com/
http://www.twitter.com/erikch

If you like to reach me find me on Twitter or Google+.

10 Comments Program With Erik Shun

 Share⤤ Sort by Best

Join the discussion…

• Reply •

Marcellin Nshimiyimana • 5 months ago

Thanks for this great post! I am assuming Ember services run on top of web
workers

 1△ ▽

• Reply •

Troy S • 5 months ago> Marcellin Nshimiyimana

No, they are plain objects. However you could totally encapsulate a web
worker if you wanted to.

 1△ ▽

• Reply •

selvagsz • 5 months ago

Thanks for the write up @erik. Just one note
""It is only instantiated once when the application loads"" - I believe services are
lazily instantiated when they are consumed.

 1△ ▽

• Reply •

Erik • 5 months agoMod > selvagsz

That sounds right, I'll update the tutorial! Thanks!
 1△ ▽

krishna • 2 months ago

that's a nice tutorial to get some idea about services. But when I tried to
implement the tutorial I got this error

Serving on http://localhost:4200/

2015-11-10 14:25 ember[17162] (FSEvents.framework) FSEventStreamStart:
register_with_server: ERROR: f2d_register_rpc() => (null) (-21)

events.js:85

throw er; // Unhandled 'error' event

 Recommend 1

Share ›

Share ›

Share ›

Share ›

http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#
https://www.twitter.com/erikch
https://plus.google.com/107517866406570189174?rel=author
https://disqus.com/home/forums/programwitherik/
https://disqus.com/home/inbox/
https://disqus.com/by/marcellin_nshimiyimana/
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2161404769
https://disqus.com/by/disqus_EqVPek7eNy/
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2166229174
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2161404769
https://disqus.com/by/selvagsz/
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2158867073
https://disqus.com/by/ErikCH/
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2159339747
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2158867073
https://disqus.com/by/disqus_BBcNmJhkf3/
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2352273552
https://disqus.com/by/shunchu/
https://disqus.com/by/marcellin_nshimiyimana/
https://disqus.com/by/disqus_EqVPek7eNy/
https://disqus.com/by/selvagsz/
https://disqus.com/by/ErikCH/
https://disqus.com/by/disqus_BBcNmJhkf3/

• Reply •

throw er; // Unhandled 'error' event

^

Error: watch EMFILE

at exports._errnoException (util.js:746:11)

at FSEvent.FSWatcher._handle.onchange (fs.js:1161:26)
 △ ▽

• Reply •

Erik • 2 months agoMod > krishna

What version of Ember are you using? Do you have the source code up
somewhere? The version I have up on my github page works.

 △ ▽

• Reply •

James Dixon • 3 months ago

Thanks for the great article, Erik!

You gave some examples of when you'd use a service. Is there any reason not to
use a service for something that isn't necessarily holding state? For example,
what about a service that returns a list of US States or Countries? Or in general,
something that I need to use in multiple places? I realize that this stuff could be
returned by a utility function or that is also injected, but I can't see a reason why
i wouldn't just use a service.

 △ ▽

• Reply •

Erik • 2 months agoMod > James Dixon

You don't want to over use services. The reasoning is that it can lead to
brittle interdependent code. You can use it in the case your mentioning,
just be careful.

 △ ▽

• Reply •

Juan Carlos Quintero • 5 months ago

Hi @Erik thanks for the tutorial! I just want to comment out that i follow all the
steps and i came across with an error in the app/services/sockjs.js, the var socket
is defined in the line 5, but is redefined in the line 9, and then in the line 16
inside the sendInfo method is not available. After that everything works perfect
with all the steps, again thanks! Waiting for the full Ember course..!

 △ ▽

• Reply •

Erik • 5 months agoMod > Juan Carlos Quintero

Oops! Thanks I fixed it! Good catch
 △ ▽

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

https://disqus.com/by/ErikCH/
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2352434984
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2352273552
https://disqus.com/by/jdixon04/
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2257517794
https://disqus.com/by/ErikCH/
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2352442351
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2257517794
https://disqus.com/by/disqus_Q3g2N90BuO/
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2169433054
https://disqus.com/by/ErikCH/
https://disqus.com/by/ErikCH/
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2169457119
http://www.programwitherik.com/ember-services-tutorial/?utm_source=Ember+Weekly&utm_campaign=4dfac7e80b-Ember_Weekly_Issue_119&utm_medium=email&utm_term=0_e96229d21d-4dfac7e80b-106356329#comment-2169433054
https://disqus.com/by/ErikCH/
https://disqus.com/by/jdixon04/
https://disqus.com/by/ErikCH/
https://disqus.com/by/disqus_Q3g2N90BuO/
https://disqus.com/by/ErikCH/

